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A B S T R A C T

Social gatherings can be an important locus of transmission for many pathogens including SARS-CoV-2. During
an outbreak, restricting the size of these gatherings is one of several non-pharmaceutical interventions available
to policy-makers to reduce transmission. Often these restrictions take the form of prohibitions on gatherings
above a certain size. While it is generally agreed that such restrictions reduce contacts, the specific size
threshold separating ‘‘allowed’’ from ‘‘prohibited’’ gatherings often does not have a clear scientific basis, which
leads to dramatic differences in guidance across location and time. Building on the observation that gathering
size distributions are often heavy-tailed, we develop a theoretical model of transmission during gatherings
and their contribution to general disease dynamics. We find that a key, but often overlooked, determinant
of the optimal threshold is the distribution of gathering sizes. Using data on pre-pandemic contact patterns
from several sources as well as empirical estimates of transmission parameters for SARS-CoV-2, we apply our
model to better understand the relationship between restriction threshold and reduction in cases. We find
that, under reasonable transmission parameter ranges, restrictions may have to be set quite low to have any
demonstrable effect on cases due to relative frequency of smaller gatherings. We compare our conceptual
model with observed changes in reported contacts during lockdown in March of 2020.
1. Introduction

Social gatherings in which people meet and interact provide a con-
ducive environment for the spread of pathogens. During an outbreak,
restricting the size of such gatherings is one of several nonpharma-
ceutical interventions (NPIs) available to policymakers. An advantage
of these restrictions is that they are simple to articulate and easy for
the public to understand and, in some circumstances, for authorities to
enforce. Indeed, during the COVID-19 outbreak, gathering size restric-
tions were among the most commonly used NPIs globally (Hale et al.,
2021). Some have claimed that these restrictions were among the most
effective at reducing transmission (Haug et al., 2020; Sharma et al.,
2021; Brauner et al., 2021; Li et al., 2021); however, given the rapid
and often haphazard nature of their rollout and the methodological
challenges of proper indentification, estimates of the causal effects of
specific NPIs may be severely biased (Haber et al., 2021).

Theory and intuition suggest that, when properly followed, gather-
ing size restrictions should lower transmission by limiting the number
of contacts between individuals and thus reducing the opportunity for
the pathogen to spread. Yet, it is often unclear precisely how low
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restrictions should be set to achieve a certain disease control target,
be it a stable number of cases or the elimination of the pathogen from
the population. Indeed, evidence suggests, policymakers have taken a
variety of approaches in practice to set gathering size thresholds, which
may reflect different goals or local disease dynamics, but also might
reflect ambiguity in the optimal strategy. As a case in point, in the
UK the government first banned gatherings above 500 in March 2020
before initiating a lockdown on March 23. Then after restrictions eased
in the late summer a ban on gatherings above 30 was declared, but
then this was famously revised down to the ‘‘rule of six’’ in September
to prevent gatherings with more than six people. In this paper, we use
epidemiological theory to better understand the relationship between
gathering size and general disease dynamics. We also attempt to enu-
merate the necessary elements to quantify or predict the impact of a
given threshold on the incidence of new cases.

We emphasize restrictions on gathering sizes for several reasons.
Firstly, we note that a significant proportion of the superspreading
events in the literature, including some of the most spectacular ac-
counts, have occurred during social gatherings. Given the outsized
vailable online 17 August 2022
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role these events seem to play at the start of outbreaks, some have
hypothesized that control and/or suppression of an emerging pathogen
could largely be achieved via targeted reduction in mass gatherings.
Secondly, several retrospective reports comparing confirmed COVID-19
cases and test-negative controls Fisher et al., 2020; Anon, 2020 have
found an association between attending family and friends gatherings
and infection with SARS-CoV-2, suggesting that gatherings may be
important source of new cases. Thirdly, social gathering restrictions
seem to be among the first and most frequent measures to be imple-
mented, which perhaps can be explained by a perception that social
gatherings have less social value than other gatherings that occur in
venues such a schools and hospitals. Finally, while both the United
States and European Centers for Disease Control recommended limiting
the size and duration of gatherings (Center for Disease Control and
Prevention (CDC), 2020; European Center for Disease Control (ECDC),
2020), the specific timing of when to implement restrictions and the
numeric threshold separating ‘‘allowable’’ from ‘‘prohibited’’ gatherings
generally did not have a clear scientific basis. This lead to dramatic dif-
ferences in guidance across location and time. For instance, while most
countries implemented limitations in the spring of 2020, the intensity
and duration of these restrictions varied extensively from country to
country (Roser et al., 2020) with maximum gathering sizes permitted
ranging from 2 to 5000 and subject to frequent and somewhat erratic
changes as the epidemic progressed.

2. Theory

As in the standard compartmental model, we consider the epidemic
spread of a pathogen in a population which can be divided into three
disjoint sets of individuals: susceptible and not yet infected (𝑆), infected
and infectious (𝐼), or recovered, no longer infectious, and immune
(𝑅). As time passes, individuals in the population come into contact
with one another and the pathogen spreads through contacts between
susceptible and infectious individuals. Gathering size restrictions limit
the number of contacts that individuals have, but apply only to a
subset of contacts that occur during social gatherings. Therefore, we
categorize all contacts between individuals as either occurring during
‘‘gatherings’’, i.e. non-household settings that are presumably affected
by gathering size restrictions, or at home or other settings not affected
by gathering size restrictions, and we focus on the former as the source
of the contribution of gatherings to disease dynamics.

At each time point, individuals attend 𝑀 gatherings of size 𝐾, where
is a random variable defined by some distribution 𝑓 (𝑘). To simplify

matters here we include the possibility that an individual does not
attend a gathering in 𝑓 (𝑘) through defining it as a gathering size of 1 so
that the same distribution applies to everyone. We define 𝑋 to be the
number of incident cases. We assume for now that policies target the
expected number of new infections that can be attributed to gatherings,
𝐸(𝑋), which, using the law of total probability, can be written as:

𝐸(𝑋) =
∑

𝑘
𝐸(𝑋 ∣ 𝐾 = 𝑘)𝑓 (𝑘) (1)

where 𝐸(𝑋 ∣ 𝐾 = 𝑘) is the expected incidence of new infections at
a given gathering size of 𝐾 = 𝑘. This expression suggests that we
could write the expected rate under an idealized restriction, that is a
restriction that is strictly enforced such that no one attends a gathering
with 𝑘 > 𝑘𝑚𝑎𝑥 as:

𝐸(𝑋𝑘𝑚𝑎𝑥 ) =
𝑘𝑚𝑎𝑥
∑

𝑘=1
𝐸(𝑋 ∣ 𝐾 = 𝑘)𝑓𝑘𝑚𝑎𝑥 (𝑘) (2)

where the sum is now over the restricted range of gathering sizes
and 𝑓𝑘𝑚𝑎𝑥 (𝑘) is the distribution of gathering sizes after the restriction
has been applied recognizing that it could differ from simply a trun-
cated 𝑓 (𝑘) as people may respond to the restriction in different ways.
Therefore, in order to estimate the potential impact of a gathering
size restriction, we need two essential inputs: (1) the distribution of
2

gathering sizes and (2) the relationship between gathering size and
expected number of infections. Then, given a range of 𝑘𝑚𝑎𝑥 values,
policymakers could ideally target a specific reduction in new cases 𝑋∗,
and select 𝑘∗ = max(𝑘𝑚𝑎𝑥) such that 𝑋 < 𝑋∗, perhaps weighing them
against the cost of imposing the restriction.

Starting with the second input, as we show in section A.1.1 of the
Appendix, the expected number of incident cases 𝑋 that occur at a
gathering of size 𝐾 = 𝑘 is :

𝐸(𝑋 ∣ 𝐾 = 𝑘) = 𝑘𝑝𝑠(1 − (1 − 𝜏)𝑘𝑝𝑖 ) (3)

where 𝜏 is the probability of transmission given contact, and 𝑝𝑠 and 𝑝𝑖
are the population proportions of susceptible and infectious individuals
respectively. We assume susceptible, infectious, and recovered individ-
uals attend gatherings at rates roughly equivalent to their population
proportions and that everyone who attends a gathering comes into
contact with all other attendees. Fig. 1(a) plots this expression for
example values of 𝜏, 𝑝𝑖, and 𝑝𝑠. As intuition might suggest, it shows
that, for a single gathering, larger gatherings produce more secondary
infections than smaller gatherings and that this relationship is nonlinear
as larger gatherings both increase the number of potential contacts and
as well as the expected number of infectious individuals in attendance.
Indeed, as shown in section A.1.2 of the Appendix, for small values of 𝜏
and 𝑝𝑖 that are typical of an infectious disease outbreak, i.e. |𝜏𝑘𝑝𝑖| ≪ 1,
we can use a Binomial approximation to simplify this to:

𝐸(𝑋 ∣ 𝐾 = 𝑘) ≈ 𝑘2𝑝𝑠𝑝𝑖𝜏 (4)

which is quadratic in the size of the gathering.
As for the other input, the distribution of gathering sizes, empirical

studies suggest that human contact distributions may be subexponen-
tial, or even scale-free or heavy-tailed, with considerable probability
mass in the extreme tail of the distribution (Barabási and Albert, 1999;
May and Lloyd; Pastor-Satorras and Vespignani, 2001; Bansal et al.,
2007). This observation applies equally to distributions of gathering
size, i.e. 𝑓 (𝑘), as most gatherings are small, but gatherings of tens or
hundreds of thousands of individuals are possible. Several generative
models of human social interaction have been proposed to explain this
phenomena based on random walks (Kelker, 1973) or attracting sites
(Barabási and Albert, 1999). Fig. 1(b) shows a few common examples of
heavy-tailed distributions. In the extreme case, the limit or asymptotic
behavior of these distributions can be characterized by a discrete power
law of the form

𝑓 (𝑘) = 𝑘−𝛼

𝜁 (𝑘𝑚𝑖𝑛, 𝛼)
, ∀𝑘 ≥ 𝑘𝑚𝑖𝑛 (5)

where 𝜁 (𝑘𝑚𝑖𝑛, 𝛼) =
∑∞

𝑛=0
(

𝑛 + 𝑘min
)−𝛼 is generalized zeta function and

𝑘𝑚𝑖𝑛 is the threshold for power-law behavior. This has important impli-
cations as moments of power law distributions may not be finite under
some parameterizations as the extreme mass in the tail leads to infinite
sums or integrals. For instance, it is well known that the number of
finite moments of power-law distributions is determined by the value
of 𝛼, when 𝛼 < 3 the distribution has finite mean but infinite variance
and when 𝛼 < 2 the distribution has no finite moments. Many observed
phenomena exhibit power-law behavior with 2 ≤ 𝛼 ≤ 3 (Clauset et al.,
2009).

Assuming that, in the range of 𝑘𝑚𝑎𝑥 restrictions considered, a power
law is a good approximation for the distribution of gathering sizes, and
combining this with the results in Eqs. (3) and (4), the expected rate of
new infections under restriction simplifies to:

𝐸(𝑋𝑘𝑚𝑎𝑥 ) =
𝑘𝑚𝑎𝑥
∑

𝑘=1
𝑘𝑝𝑠(1 − (1 − 𝜏)𝑘𝑝𝑖 ) 𝑘−𝛼

𝜁 (𝑘𝑚𝑖𝑛, 𝛼)

≈
𝑝𝑠𝑝𝑖𝜏

𝜁 (𝑘𝑚𝑖𝑛, 𝛼)

𝑘𝑚𝑎𝑥
∑

𝑘=1
𝑘2−𝛼

(6)

Viewing the ∑𝑘𝑚𝑎𝑥
𝑘=1 𝑘2−𝛼 as a weighted sum denoting the contribution
of gatherings of size between 1 and 𝑘𝑚𝑎𝑥 to the rate of new infections
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Fig. 1. Plots of necessary components of effect of gathering size restriction. In panel (a), we fix transmission parameters to following values 𝑝𝑖 = 0.01, 𝑝𝑠 = 0.99, 𝜏 = 0.08 and
assume power law behavior starts at 𝑘𝑚𝑖𝑛 = 1.
yields the following insight: when 𝛼 < 2 the contributions are increasing
suggesting that larger gatherings contribute more to the rate of new
infections than smaller gatherings and by extension there are diminish-
ing returns to imposing lower restrictions; while, on the other hand,
when 𝛼 ≥ 2 contributions are flat or decreasing suggesting that smaller
gatherings contribute more to the rate of new infections than larger
gatherings and by extension there are increasing returns to imposing
lower restrictions.

In Fig. 2 we plot an example of the relative rate of incident cases
under a restriction which prohibits gatherings above size 𝑘𝑚𝑎𝑥 for power
law distributions of gathering size with different 𝛼 values. Here, we
see that when 𝛼 is 2 or below, restrictions of larger gatherings quickly
leads to a large reduction in cases; however, as 𝛼 increases vastly more
stringent restrictions are required to achieve meaningful reductions.
This suggests that the empirical distribution of gathering sizes and the
tail-behavior specifically, i.e. the frequency of very large gatherings
relative to small ones, are important parameters in determining the
optimal threshold for gathering size restrictions. As shown in section
A.2.1 and A.2.2, these results are robust to variations in 𝜏 and 𝑝𝑖 and
𝑝𝑟, respectively. In A.2.3 we relax the assumption that the distribution
of gatherings follows a power law, and instead consider a log-normal
distribution.

3. Application

In the previous section, we showed the distribution of gathering
sizes, and the tail-behavior more specifically, is an important deter-
minant of the degree to which smaller or larger gatherings contribute
to epidemic dynamics. In this section, we use observational data on
the size of human gatherings from multiple sources to estimate the
empirical power law behavior of gathering size distributions. We use
data collected both during ‘‘normal’’ times and during the COVID-19
pandemic as a reference for 𝑓 (𝑘) an 𝑓𝑘𝑚𝑎𝑥 (𝑘) respectively. We estimate
the effect of gathering size restrictions during the COVID-19 pandemic
using the results from the previous section and empirical estimates of
transmission parameters.

Our data on gathering size distributions in the pre-pandemic period
are from two primary sources: the BBC Pandemic study (Klepac et al.,
2018) and the Copenhagen Networks Study (CNS) of university sources
(Sekara et al., 2016). Both are described in more detail elsewhere.
Briefly, the BBC Pandemic study is a citizen science project in which
UK citizens self-reported daily contacts using a mobile app in 2018.
We extracted the number of contacts made in a day by setting (home,
work/school or other) for over 38,000 participants (Kucharski et al.,
2020) and then divide by the gathering size to account for the over
3

selection of large gatherings. In the Copenhagen Networks Study, the
Table 1
Descriptive statistics for empirical distributions of gathering size.

Data source N mean variance q90 q99 min max

BBC Pandemic
Home 16,524 2.3 1.4 4 6 1 10
Work/school 19,044 2.0 10.0 4 15 1 235
Other 19,459 2.0 5.5 4 12 1 201
Total 55,026 2.1 5.8 4 12 1 235

Copenhagen Networks Study 58,227 4.9 103.1 7 46 2 315

movement and contacts among approximately 1000 university students
were intensively tracked and measured via Bluetooth, telecommunica-
tion networks, online social media contacts and geolocation over a 5
month period in 2014. In the supplement to the original study the au-
thors report the distribution of 23,231 gatherings observed during the
study period. A gathering was defined as groups of individuals in close
physical proximity that persists for at least 20 min. We extracted the
raw data for the probability of observing gatherings of different sizes
(Supplementary Figure S9a) using WebPlotDigitizer, an online
tool that allows the extraction of numerical data from graphs (Rohatgi,
2020).

Table 1 provides the descriptive statistics for the empirical distribu-
tions of gathering sizes extracted from both sources. In all cases except
for household sizes the variance is much greater than the mean which is
indicative of overdispersion or a ‘‘heavy tail’’. The maximum gathering
sizes outside the household were between 200 and 315. The 90th and
99th empirical quantiles similarly suggest extreme skewness.

Fig. 3 plots the full distribution of gathering sizes from both sources
using a log–log scale. In all contexts the majority of individuals have
very few contacts. For work/school and social gatherings, a very long
tail of individuals have very large number of encounters (up to 234
daily contacts at work). We plot both the empirical mass function and
the complementary cumulative distribution function (CCDF), also often
referred to as Zipf plot, noting that the second is generally preferred for
distinguishing power-law type behavior. Typically, a CCDF plot from a
power law should be linear on a log–log scale. Here we see that most
contexts exhibit approximately linear behavior over significant range;
however at the extreme right there may be some nonlinearity which
may suggest the presence of an upper bound (for instance the gathering
size cannot exceed population size). Interestingly, the distributions of
gathering size reported in the Copenhagen Networks Study (CNS) and
number of contacts reported in the BBC Pandemic study are similar
in range and shape, despite having been measured using completely
different methodologies at different times and locations.

Next, we find the best fitting power law for the observed distri-

butions using maximum likelihood. Using the poweRlaw (Gillespie,
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Fig. 2. Relative rate of incident cases under restriction which prohibits gatherings above size 𝑘𝑚𝑎𝑥 for different power law distributions. Here we fix transmission parameters to
following values 𝑝𝑖 = 0.01, 𝑝𝑠 = 0.99, 𝜏 = 0.08 and assume power law behavior starts at 𝑘𝑚𝑖𝑛 = 1. We truncate the power law above gatherings of size 500 both to make the sum
ractable and given that gathering sizes must at minimum be less than population size. The figure shows the relative rate of incident cases calculated using Eq. (6) and comparing
estrictions with 𝑘𝑚𝑎𝑥-level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident cases at time 𝑡 relative to unrestricted rate).
014) package in R, we estimate 𝛼 as well as 𝑘𝑚𝑖𝑛 representing the size
eyond which the distribution exhibits power law behavior. For the
atter, we use the approach of Clauset et al. (2009) and estimate it by
inding the value which minimizes the Kolmogorov–Smirnov statistic.

e estimate the standard errors for both using the bootstrap.
Fig. 4 shows the resulting power law fits for each of the data sources.

he 𝛼 values estimated range from 2.28 to 6.94, with all settings other
han households between 2 and 4. The estimate for the Copenhagen
etwork study in particular is consistent with infinite second moments

i.e. infinite variance). However, visual inspection suggests that a single
ower law might not fit well in the extreme tail, with most settings
xhibiting considerably lower observed frequencies than suggested by
he best-fitting power law. This may be partially due to low cell counts
r sampling variability in these extreme quantiles, or as discussed
reviously may be reflective of the fact that the true distribution is
runcated with an upper bound on gathering size.

Next, we attempt to estimate the effect of a hypothetical gathering
ize restriction by replicating the analysis shown in Fig. 2 but substi-
uting the empirical gathering size distributions. This would represent
n idealized intervention in which everyone followed the restriction by
ot attending a gathering over the threshold, but their other gathering-
eeking behavior is otherwise unaffected. Fig. 5 shows the results
or the distributions in each of the data sources. Here we see that,
o achieve reduction in cases of 50% or more, restrictions must be
et below 30 in most settings. Compared with the results in Fig. 2,
owever, we see that the empirical distributions suggest a larger impact
f restrictions on medium to large size gatherings, likely because the
mpirical distributions have slightly less mass in the extreme tail than
ould be suggested by a true power law. As shown in A.2.2, these

esults remain mostly unchanged when allowing values of 𝑝𝑖 and 𝑝𝑟 to
ary.

Finally, while taking the pre-restriction (and pre-outbreak) distri-
ution such as in the analysis above can help one plan for extreme
cenarios, it is clear that humans react to restrictions in complex
ays that may not mirror the ideal discussed above. Therefore, we
lso extracted data from the CoMIX study (CMMID COVID-19 working
roup et al., 2020), which was designed as a deliberate follow on
o the BBC Pandemic during the COVID-19 pandemic. In this study,

representative sample of 1,240 adults in the UK were asked about
4

their contact patterns in the first week of the government-imposed
‘lockdown’ in March 2020. As before, we extracted the number of
contacts made in a day by setting (home, work/school, or other). This
additional data provides insight into the distribution of contacts under
strong social distancing measures.

Fig. 6 shows the full distribution of gathering sizes on a log–log
scale comparing CoMIX to the pre-pandemic ‘‘normal’’ recorded in the
BBC Pandemic study. Although sample sizes were considerably lower
in CoMIX, several interesting patterns emerge. First, the distribution
of household contacts under lockdown is almost identical to its pre-
pandemic baseline, which is reassuring given household composition is
largely unaffected by lockdown. Next, gatherings at work/school and
other settings appear ‘‘clipped’’ relative to their pre-pandemic baseline
and there now appears to be a preference for lower gathering sizes with
a few outliers. This seems consistent with most people complying with
order and a few who cannot (for instance because their occupation is
among those deemed ‘‘essential’’) or who refuse.

4. Discussion

As the COVID-19 pandemic has demonstrated, non-pharmaceutical
interventions are an essential tool to limit the spread of infectious
diseases, both in the absence of vaccines or effective therapeutics,
and when facing surges that test capacity of health systems or the
emergence of new variants. We have shown that, when consider-
ing limitations on gathering size, decision-makers should consider the
distribution of gathering sizes in addition to local conditions when
determining the optimal threshold. While a lot of attention has fo-
cused on large gatherings, we show that small gatherings, due to their
frequency, can be important contributors to transmission dynamics.
Using empirical data from previous studies, we find that gathering size
distributions are in fact ‘‘heavy-tailed’’ but that meaningful reduction in
new cases only occurs once restrictions are set quite low. In theory this
conclusion should also apply to future emerging variants of COVID-19
as well as future epidemics other than COVID-19. Our conclusion aligns
with that of Brooks-Pollock et al. (2021) who have showed that large
gatherings of 50+ individuals have relatively small epidemiological
impact while small and medium-sized groups of 10 to 50 individuals
contribute most to COVID-19 epidemics.
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Fig. 3. Distribution of gathering sizes from the CNS and the BBC Pandemic study by setting. Empirical distribution of gathering size from the CNS as well as the BBC Pandemic
study by setting (home, work/school, other and total). Panel (a) is a log–log plot of the empirical probability that each size is observed. Panel (b) is the empirical complementary
cumulative distribution function, i.e. the probability of observing size greater than or equal to 𝑘, and is often preferred for understanding tail behavior.
Our work highlights the fact that more detailed data on human
athering sizes dynamics are needed, as datasets on this facet of social
ynamics are extremely rare. This should include data on gather-
ng size and duration across contexts and seasons as well as how
istributions change during the course of an outbreak. These data,
f available to policy-makers, would allow for more tailored restric-
ions and potentially more effective interventions. They would also
ontribute to better understanding of micro-dynamics of transmission
uring an outbreak and better parameterization of infectious disease
odels. Continuously tracked, remotely sensed data from cell phones,
ith appropriate anonymization and protection of individuals, may be
ne avenue for collecting this information on a large scale. Researchers
nd policy-makers could gain from increased access to such data.
5

Our model relies on multiple simplifying assumptions. Recogniz-
ing that violations are not equal and from the point of view of the
policymaker the cautious approach is often the most prudent, where
possible we have made effort to make conservative assumptions. First,
by using a single probability we ignore many important heterogeneities
in transmission risk (e.g indoor vs outdoor, use of face coverings,
duration, ventilation, etc.). However, as shown in A.2.1, this would
only substantively affect our conclusions if heterogeneity varies with
gathering size. For instance, if larger gatherings are more likely to be
outdoor and people perceive them to be more dangerous and therefore
adhere more strictly to masking and social distancing guidance then it
is possible that the per contact transmission risk may decrease with size
of gathering, making restrictions on large gatherings even less effective
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Fig. 4. Estimates of power law parameters for the Copenhagen Networks Study (CNS) and the BBC Pandemic study by setting. Plot is complementary cumulative distribution
function versus gathering size with lines showing fitted power law distribution. Estimates for 𝛼 and 𝑘𝑚𝑖𝑛 obtained using maximum likelihood for discrete power law using the
poweRlaw package in R.
Fig. 5. Relative rate of incident cases under restriction which prohibits gatherings above size 𝑘𝑚𝑎𝑥 using different data sources for the distributions of gathering sizes. Again we fix
ransmission parameters to following values 𝑝𝑖 = 0.01, 𝑝𝑠 = 0.99, 𝜏 = 0.08 but use draws from empirical distributions in Fig. 3. The relative rate of incident cases calculated using
q. (6) and comparing restrictions with 𝑘𝑚𝑎𝑥-level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident cases at time 𝑡 relative to unrestricted
ate) is shown.
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elative to smaller ones. In this case, it would still be possible to
pply the model presented, but specifying the transmission risk for each
athering size, which in practice may be hard to empirically validate.

Second, we assume in the main analysis that the probability of
ransmission is constant across gathering sizes, which may not be
easonable for very large gatherings (except perhaps in the case of an
irborne pathogen in an unventilated and crowded indoor space). Here
ur model clearly represents a worst case scenario where all individuals
ave contacts with all other attendees. It thus likely overestimates
he contribution of large gatherings to the overall number of new
nfections. We show in a sensitivity analysis in A.2.1 how allowing 𝜏 to
ary with gathering size may affects our conclusions.

Third, we assume that susceptible, infected and recovered individ-
als are exchangeable, mix randomly, exhibit the same behavior and
6

s

ttend gatherings at the same proportion as their proportion in the
nderlying population distribution. This may not be the case if, for
nstance, infectious people self-isolate upon developing symptoms or
f there exists significant subsets of susceptibles who avoid gatherings
nd significant recovereds who believe they are immune and therefore
o to gatherings at rates above their population fraction. Again these
eterogeneities in behavior will mostly affect our conclusions if they
ary with size of the gathering. In particular, they may lead to sub-
tantially different conclusions if behavioral dynamics tend to favor
ransmission at larger gatherings, such as if a infectious individuals
re more likely to attend large gatherings. Even if they vary with
athering size though, they must also overcome the relative rarity of
arge gatherings. For instance, it is plausible that for a given ‘‘super-
preader’’, i.e. an individual with enhanced infectiousness either due to
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Fig. 6. Distribution of gathering sizes before/during UK lockdown. Empirical distribution of gathering sizes by setting (home, work/school, other and total) during UK lockdown
in March of 2020 are shown in color as measured in the CoMIX study. The colors match those used in Figs. 3-5. For comparison, the corresponding distributions as measured
pre-pandemic in the BBC Pandemic study are shown in gray for each setting. These are the same as Fig. 3a.
biology, timing, or sociability, their impact would scale with gathering
size. Indeed, some of the most well-publicized super-spreading events
have occurred at large gatherings, such as choir practices (Hamner
et al., 2020) or weddings (Mahale et al., 2020). However, these events
are unlikely to contribute meaningfully to determination of restriction
thresholds as they require the conjunction of two extremely rare events:
a large gatherings occurring, and a very infectious ’super-spreader’
individual attending such a large gathering. Similarly, in estimating
effect of a certain threshold, we assume that individuals respond to
gathering size restrictions uniformly, with perfect compliance and that
they do not adapt their social behaviors independently of the reg-
ulation, based on, for instance, their knowledge of local epidemic
dynamics. This is obviously not true in practice, but most plausible
deviations would tend to make our estimates an upper bound on the
effect of restrictions above a certain size. However, if announcing any
restriction is a sufficient signal that many opt to avoid any gatherings at
all, that may lead to a large reduction in cases even at a relatively large
threshold. This may be more likely at the start of an outbreak when
people are still attempting to ascertain the seriousness of the risk. In
practice, responses to restrictions have varied, both across places and
at different points during the pandemic as enthusiasm wanes (Kishore
et al., 2022; Petherick et al., 2021). Policy-makers should take this into
account when determining the right threshold.

Lastly, we assume all new infections to be equivalent, not consider-
ing heterogeneity in the impact of secondary infections. This assump-
tion again may not be reasonable at the beginning of an epidemic when
local transmission is not established and we might expect infections at
larger gatherings to seed downstream cases in more diverse parts of the
population/community. In this case although larger gatherings are less
frequent they act as central nodes in the contact graph through which
infection reaches sub-communities.

Our work is also subject to several limitations due to the data
sources that we used. The three data sources (BBC Pandemic, CoMIX
7

and CNS) had different aims, study designs and limitations. We assume
they all provide good estimates of frequency of gathering sizes. In using
the BBC Pandemic and CoMIX study we approximate the size of gather-
ings by assuming that all daily contacts in a given context all took place
in one gathering. The CoMIX study was conducted during the first week
of lockdown in March 2020 in the UK and may not be representative
of restrictions in other locations or times. The Copenhagen Networks
Study studied university students in Copenhagen, a specific population
that may not be representative of other populations. In the case of
the BBC Pandemic and CoMIX data, a particular threat to our main
conclusions might be measurement error that correlates with gathering
size, for instance if people get worse at recalling or recording the size of
larger gatherings we may underestimate their frequency and therefore
their contribution to transmission dynamics. This is a major advantage
of the CNS data which were remotely recorded by cellphone and gps
devices.

Data availability

All code and data are available online at https://github.com/boyer
cb/covid-gathering-size.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.epidem.2022.100620.
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